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Chapter 13:

Introduction 

to Classes
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13.1

Procedural and  Object-Oriented 

Programming
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Procedural and Object-Oriented 

Programming
• Procedural programming focuses on the 

process/actions that occur in a program

• Object-Oriented programming is based on 

the data and the functions that operate on 

it.  Objects are instances of ADTs that 

represent the data and its functions
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Limitations of Procedural 

Programming
• If the data structures change, many 

functions must also be changed

• Programs that are based on complex 
function hierarchies are:

– difficult to understand and maintain

– difficult to modify and extend

– easy to break
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Object-Oriented Programming

Terminology
• class: like a struct (allows bundling of 

related variables),  but variables and 

functions in the class can have different 
properties than in a struct

• object: an instance of a class, in the 

same way that a variable can be an 
instance of a struct
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Classes and Objects

• A Class is like a blueprint and objects are 

like houses built from the blueprint



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

Terminology
• attributes: members of a class 

• methods or behaviors: member functions 
of a class
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More on Objects

• data hiding: restricting access to certain 
members of an object

• public interface: members of an object that are 
available outside of the object.  This allows the 
object to provide access to some data and 
functions without sharing its internal details and 
design, and provides some protection from data 
corruption
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13.2

Introduction to Classes
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Introduction to Classes

• Objects are created from a class

• Format:

 class ClassName

 {

   declaration;

   declaration;

 };
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Class Example



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Access Specifiers

• Used to control access to members of the class

• public:  can be accessed by functions outside 
of the class

• private:  can only be called by or accessed 
by functions that are members of the class
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Class Example

Private Members

Public Members
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More on Access Specifiers

• Can be listed in any order in a class

• Can appear multiple times in a class

• If not specified, the default is private
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Using const With Member Functions

• const appearing after the parentheses in 

a member function declaration specifies 

that the function will not change any data 

in the calling object.
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Defining a Member Function

• When defining a member function:

– Put prototype in class declaration

– Define function using class name and scope 
resolution operator (::)

 int Rectangle::setWidth(double w)

 {

  width = w;

 }
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Accessors and Mutators

• Mutator: a member function that stores a 

value in a private member variable, or 

changes its value in some way

• Accessor: function that retrieves a value 

from a private member variable. 

Accessors do not change an object's data, 
so they should be marked const.
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13.3

Defining an Instance of a Class
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Defining an Instance of a 

Class

• An object is an instance of a class

• Defined like structure variables:
 Rectangle r;

• Access members using dot operator:
 r.setWidth(5.2);

 cout << r.getWidth();

• Compiler error if attempt to access 
private member using dot operator
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Program 13-1 (Continued)
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Program 13-1 (Continued)
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Program 13-1 (Continued)
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Avoiding Stale Data

• Some data is the result of a calculation.

• In the Rectangle class the area of a rectangle is 
calculated.
– length x width

• If we were to use an area variable here in the 
Rectangle class, its value would be dependent on the 
length and the width.

• If we change length or width without updating area, 
then area would become stale.

• To avoid stale data, it is best to calculate the value of 
that data within a member function rather than store it in 
a variable.
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Pointer to an Object

• Can define a pointer to an object:

Rectangle *rPtr;

• Can access public members via pointer:

rPtr = &otherRectangle;

rPtr->setLength(12.5);

cout << rPtr->getLenght() << endl;
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Dynamically Allocating an 

Object
• We can also use a pointer to dynamically 

allocate an object.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.4

Why Have Private Members?



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Why Have Private Members?

• Making data members private provides 
data protection

• Data can be accessed only through 
public functions

• Public functions define the class’s public 
interface
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Code outside the class must use the class's 

public member functions to interact with the 

object.
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13.5

Separating Specification from 

Implementation
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Separating Specification from 

Implementation
– Place class declaration in a header file that 

serves as the class specification file.  Name the 
file ClassName.h, for example, Rectangle.h

– Place member function definitions in 
ClassName.cpp, for example, 
Rectangle.cpp  File should #include the 
class specification file

– Programs that use the class must #include 
the class specification file, and be compiled and 
linked with the member function definitions
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13.6

Inline Member Functions
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Inline Member Functions

• Member functions can be defined

– inline: in class declaration

– after the class declaration

• Inline appropriate for short function bodies:

 int getWidth() const

   { return width; }
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Rectangle Class with Inline 

Member Functions
1  // Specification file for the Rectangle class

 2  // This version uses some inline member functions.

 3  #ifndef RECTANGLE_H

 4  #define RECTANGLE_H

 5 

 6  class Rectangle

 7  {

 8     private:

 9        double width;

10        double length;

11     public:

12        void setWidth(double);

13        void setLength(double);

14       

15        double getWidth() const

16           { return width; }

17          

18        double getLength() const

19           { return length; }

20          

21        double getArea() const

22           { return width * length; }

23  };

24  #endif
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Tradeoffs – Inline vs. Regular 

Member Functions
• Regular functions – when called, compiler 

stores return address of call, allocates 

memory for local variables, etc.

• Code for an inline function is copied into 

program in place of call – larger 

executable program, but no function call 

overhead, hence faster execution
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13.7

Constructors



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constructors

• Member function that is automatically called 
when an object is created

• Purpose is to construct an object

• Constructor function name is class name

• Has no return type
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Continues...
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Contents of Rectangle.ccp Version3 

(continued)
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Default Constructors

• A default constructor is a constructor that takes no 
arguments.

• If you write a class with no constructor at all, C++ will 
write a default constructor for you, one that does nothing.

• A simple instantiation of a class (with no arguments) 
calls the default constructor:

 Rectangle r;
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13.8

Passing Arguments to 

Constructors
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Passing Arguments to 

Constructors

• To create a constructor that takes arguments:

– indicate parameters in prototype:

Rectangle(double, double);

– Use parameters in the definition:

Rectangle::Rectangle(double w, double 

len)

{

   width = w;

   length = len;

}
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Passing Arguments to 

Constructors

• You can pass arguments to the constructor 
when you create an object:

 Rectangle r(10, 5);
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More About Default 

Constructors
• If all of a constructor's parameters have default 

arguments, then it is a default constructor. For 
example:

Rectangle(double = 0, double = 0);

• Creating an object and passing no arguments 
will cause this constructor to execute:

Rectangle r;
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Classes with No Default 

Constructor
• When all of a class's constructors require 

arguments, then the class has NO default 

constructor.

• When this is the case, you must pass the 

required arguments to the constructor 

when creating an object.
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13.9

Destructors
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Destructors

• Member function automatically called when an 
object is destroyed

• Destructor name is ~classname, e.g., 
~Rectangle

• Has no return type; takes no arguments

• Only one destructor per class, i.e., it cannot be 
overloaded

• If constructor allocates dynamic memory, 
destructor should release it 
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Contents of InventoryItem.h Version1 

(Continued)
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Constructors, Destructors, and 

Dynamically Allocated Objects
• When an object is dynamically allocated with the 

new operator, its constructor executes:

Rectangle *r = new Rectangle(10, 20);

• When the object is destroyed, its destructor 
executes:

delete r;
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13.10

Overloading Constructors



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Overloading Constructors

• A class can have more than one constructor

• Overloaded constructors in a class must have 

different parameter lists:

 Rectangle();

Rectangle(double);

 Rectangle(double, double);
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Continues...
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Only One Default Constructor                     

and One Destructor

• Do not provide more than one default 

constructor for a class: one that takes no 

arguments and one that has default arguments 

for all parameters

 Square();

 Square(int = 0);  // will not compile

• Since a destructor takes no arguments, there 

can only be one destructor for a class
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Member Function Overloading

• Non-constructor member functions can 

also be overloaded:

 void setCost(double);

 void setCost(char *);

• Must have unique parameter lists as for 

constructors
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3.11

Using Private Member Functions
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Using Private Member 

Functions
• A private member function can only be called 

by another member function

• It is used for internal processing by the class, not 
for use outside of the class

• See the createDescription function in 
ContactInfo.h (Version 2)
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13.12

Arrays of Objects
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Arrays of Objects

• Objects can be the elements of an array:

InventoryItem inventory[40];

• Default constructor for object is used 
when array is defined
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Arrays of Objects

• Must use initializer list to invoke 
constructor that takes arguments:

InventoryItem inventory[3] =

{ "Hammer", "Wrench", "Pliers" }; 
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Arrays of Objects

• If the constructor requires more than one 

argument, the initializer must take the 

form of a function call:
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Arrays of Objects

• It isn't necessary to call the same 

constructor for each object in an array:
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Accessing Objects in an Array

• Objects in an array are referenced using 
subscripts

• Member functions are referenced using dot 
notation:

inventory[2].setUnits(30);

cout << inventory[2].getUnits(); 
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Program 13-3 (Continued)
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13.15

The Unified Modeling Language
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The Unified Modeling Language

• UML stands for Unified Modeling 

Language. 

• The UML provides a set of standard 

diagrams for graphically depicting object-

oriented systems
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UML Class Diagram

• A UML diagram for a class has three main 

sections.
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Example: A Rectangle Class

class Rectangle

{

   private:

      double width;

      double length;

   public:

      bool setWidth(double);

      bool setLength(double);

      double getWidth() const;

      double getLength() const;

      double getArea() const;

};
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UML Access Specification 

Notation

• In UML you indicate a private member 

with a minus (-) and a public member 

with a plus(+).

These member variables are 

private.

These member functions are 

public.



Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Data Type Notation

• To indicate the data type of a member variable, 

place a colon followed by the name of the data 

type after the name of the variable. 

- width : double
- length : double
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UML Parameter Type 

Notation

• To indicate the data type of a function’s 

parameter variable, place a colon followed 

by the name of the data type after the 

name of the variable. 

+ setWidth(w : double)
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UML Function Return Type 

Notation

• To indicate the data type of a function’s 

return value, place a colon followed by the 

name of the data type after the function’s 

parameter list. 

+ setWidth(w : double) : void
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The Rectangle Class
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Showing Constructors and 

Destructors

Constructors

Destructor

No return type listed for 

constructors or destructors
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