Chapter 13:

From Control Structures
through Objects

seventh edition

Introduction
to Classes

TONY GADDIS

Addison-Wesley
is an imprint of

VSIS Copyright © 2012 Pearson Education, Inc.
,/‘\,

Procedural and Object-Oriented
Programming

Copyright © 2012 Pearson Education, Inc.

Procedural and Object-Oriented

Programming

* Procedural programming focuses on the
process/actions that occur in a program

* Object-Oriented programming is based on
the data and the functions that operate on
it. Objects are instances of ADTs that
represent the data and its functions

Copyright © 2012 Pearson Education, Inc.

Limitations of Procedural

Programming

* |f the data structures change, many
functions must also be changed

* Programs that are based on complex
function hierarchies are:

— difficult to understand and maintain
— difficult to modify and extend
— easy to break

Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

Terminology

 class: like a struct (allows bundling of

related variables), but variables and

functions in the class can have different
properties than in a struct

* object: an instance of a class, in the

same way that a variable can be an
instance of a struct

Copyright © 2012 Pearson Education, Inc.

Classes and Objects

* A Class is like a blueprint and objects are
like houses built from the blueprint

Blueprint that describes a house.

Instances of the house described by the blueprint.

H |- H | H

E E E

= = =

Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

Terminology
o attributes: members of a class

e methods or behaviors: member functions
of a class

Copyright © 2012 Pearson Education, Inc.

More on Objects

« data hiding: restricting access to certain
members of an object

 public interface: members of an object that are
available outside of the object. This allows the
object to provide access to some data and
functions without sharing its internal details and
design, and provides some protection from data
corruption

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
I 3 | 2 TONY GADDIS

Introduction to Classes

seventh edition

Copyright © 2012 Pearson Education, Inc.

Introduction to Classes

* Objects are created from a class
 Format:

class ClassName

{

declaration;

declaration;

by

Copyright © 2012 Pearson Education, Inc.

Class Example

class Rectangle
1
private:
double width:
doubble length;
public:
vold setWidth(double);
vold setlLength({double);
double getWidth() const;
double getlLength{) const;
doulbble JgetArea() const;

Copyright © 2012 Pearson Education, Inc.

Access Specifiers

« Used to control access to members of the class

« public: can be accessed by functions outside
of the class

« private: can only be called by or accessed
by functions that are members of the class

Copyright © 2012 Pearson Education, Inc.

Class Example

Private Members
class Rectangle
1 //

privates:

double width; Public Members

double length; ///
public:

vold setWidth(double);
vold setlength{double);
double getWidth() const;
double getLengthi{) const;
double JgetlArea() const;

Copyright © 2012 Pearson Education, Inc.

More on Access Specifiers

» Can be listed in any order in a class

« Can appear multiple times in a class

* If not specified, the default is private

Copyright © 2012 Pearson Education, Inc.

Using const With Member Functions

e const appearing after the parentheses in
a member function declaration specifies
that the function will not change any data
In the calling object.

double getWidth() const;
double getLength() const;

double getArea() const;

Copyright © 2012 Pearson Education, Inc.

Defining a Member Function

* When defining a member function:
— Put prototype in class declaration

— Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth (double w)

{
width = w;

J

Copyright © 2012 Pearson Education, Inc.

Accessors and Mutators

* Mutator: a member function that stores a
value in a private member variable, or
changes its value in some way

 Accessor: function that retrieves a value
from a private member variable.

Accessors do not change an object's data,
so they should be marked const.

Copyright © 2012 Pearson Education, Inc.

From Control Structures
through Objects

seventh edition

TONY GADDIS

Defining an Instance of a Class

Copyright © 2012 Pearson Education, Inc.

Defining an Instance of a
Class

* An object is an instance of a class
» Defined like structure variables:
Rectangle r;

* Access members using dot operator:
r.setWidth(5.2);
cout << r.getWidth () ;

« Compiler error if attempt to access
private member using dot operator

Copyright © 2012 Pearson Education, Inc.

Program 13-1

{/f This program demonstrates a simple class.
¢include <icstream=
using namespace std;

{// Rectangle class declaration.
class Rectangle

{
private:
double width:
double length;
public:
vold setWidth(double);
volid setLength{double);
double getWidth() const;
double getlLength() const;
double gethArea() const;
i

ff**************k*k*******t**************k*k*k******

{/ setWidth assigns a walue to the width member. *
ff**************k*k*k***t****************k*k*k***t**

vold Rectangle::setWidth(double w)

{
width = w;

ff********************t*t*t************************t

{/ setlLength assigns a value to the length member. *
ff********************t*t*t********************t*t*t

Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

vold Rectangle::setlength({double len)

{
length = len;

fﬁt**t**************t**t*****************t**********

{/ getWidth returns the wvalue in the width member. *
fﬁtt*tttt*t**t*t**k*tt*tttt*t**t*tt*k**t*tttt**t*t**

double Rectangle::getWidth() const
{

return width;:

fﬁtt*tt*t*********#*t#*tt*t**t******#*ﬁ#*tt*t**t******

{/ getLength returns the walue in the length member. *
ffttttttt*t****t**t*tt*tttt*tt*t*t**t**t*tttt*tt*t****

double Rectangle::getlLength() const
{

return length;

Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

HH*****************************t*****************t*****

{/{ getArea returns the product of width times length. *
fﬁ******t*t*ttk****t****t*t****tktkt******t******tk*k*t

double Eectangle::getlrea() const

1
return width * length;

fﬁ*tt*t*t*t**ttt*t*tt***t*t*tt*t#t#t**ﬁ*t*t*t**t*t#t#tt

S/ Funection main *
HH***********tk****************tk*k**************tk*k**

int mainf()

{
Rectangle hox; // Define an instance of the Rectangle class
double rectWidth:; // Local variable for width
double rectlength; // Local wariable for length

{{ Get the rectangle's width and length from the user.
cout << "This program will calculate the area of a\n";
cout << "rectangle. What is the width? ";
cin »» rectWidth;

cout << "What is the length? ";

cin »> rectLenagth;

// Store the width and length of the rectangle
{4 in the box object.

box.setWidth(rectWidth);
box.setlength|rectLength);

Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

// Display the rectangle's data.
cout << "Here 1s the rectangle's data:‘\n";

cout << "Width: " << box.getWidth({) << endl;
cout << "Length: " << box.getLength() << endl;
cout << "Area: " << boX.getArea() << endl;
return 0O;
I
Program Output

This program will calculate the area of a
rectangle. What is the width? 10 [Enter]
What is the length? 5 [Enter]

Here 1s the rectangle's data:

Width: 10
Length: 5
Area: 50

Copyright © 2012 Pearson Education, Inc.

Avoiding Stale Data

« Some data is the result of a calculation.

* In the Rectangle class the area of a rectangle is
calculated.
— length x width

» If we were to use an area variable here in the
Rectangle class, its value would be dependent on the
length and the width.

» If we change 1length or width without updating area,
then area would become stale.

 To avoid stale data, it is best to calculate the value of
that data within a member function rather than store it in
a variable.

Copyright © 2012 Pearson Education, Inc.

Pointer to an Object

» Can define a pointer to an object:
Rectangle *rPtr;

« Can access public members via pointer:
rPtr = &otherRectangle;

rPtr->setLength (12.5);
cout << rPtr->getlLenght () << endl;

Copyright © 2012 Pearson Education, Inc.

Dynamically Allocating an
Object

* We can also use a pointer to dynamically
allocate an object.

// Define a Rectangle pointer.
Eectangle *rectPtr;

// Dynamically allocate a Rectangle object.
rectPtr = new Rectangle;

{/f Store values in the cbject's width and length.

rectPtr->setWidth(10.0);
rectPtr->setlLength{15.0);

// Delete the object from memory.
delete rectPtr:
rectPtr = 0;

Copyright © 2012 Pearson Education, Inc.

From Control Structures
through Objects

seventh edition

TONY GADDIS

Why Have Private Members?

Copyright © 2012 Pearson Education, Inc.

Why Have Private Members?

» Making data members private provides
data protection

« Data can be accessed only through
public functions

* Public functions define the class’s public
interface

Copyright © 2012 Pearson Education, Inc.

Code outside the class must use the class's
public member functions to interact with the
object.

Rectangle Class

v‘\{idth I?ngth
- setWidth:I \
Code .+ | getWidth
Outside the
Class setLength——
B getLength=——

Copyright © 2012 Pearson Education, Inc.

‘ _| STARTING OUT WITH ‘ =

From Control Structures

Y
I 3 | 5 TONY GADDIS

Separating Specification from
Implementation

Copyright © 2012 Pearson Education, Inc.

Separating Specification from
Implementation

— Place class declaration in a header file that
serves as the class specification file. Name the
file ClassName.h, for example, Rectangle.h

— Place member function definitions in
ClassName. cpp, for example,
Rectangle.cpp File should #include the
class specification file

— Programs that use the class must #include
the class specification file, and be compiled and
linked with the member function definitions

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
I 3 | 6 TONY GADDIS

Inline Member Functions

seventh edition

Copyright © 2012 Pearson Education, Inc.

Inline Member Functions

* Member functions can be defined
— Inline: In class declaration
— after the class declaration

* Inline appropriate for short function bodies:

int getWidth () const
{ return width; }

Copyright © 2012 Pearson Education, Inc.

Rectangle Class with Inline
Member Functions

1 // Specification file for the Rectangle class
2 // This version uses some inline member functions.
3 #ifndef RECTANGLE H

4 #define RECTANGLE H

5

6 class Rectangle

T A

8 private:

9 double width;
10 double length;
11 public:
12 vold setWidth (double) ;
13 void setLength (double) ;
14
15 double getWidth () const
16 { return width; }
17
18 double getLength () const
19 { return length; }
20
21 double getArea () const
22 { return width * length; }
23 };
24 #endif

Copyright © 2012 Pearson Education, Inc.

Tradeoffs — Inline vs. Regular

Member Functions

* Regular functions — when called, compiler
stores return address of call, allocates
memory for local variables, etc.

» Code for an inline function is copied into
program in place of call — larger
executable program, but no function call
overhead, hence faster execution

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

13.7

Constructors

~ STARTING OUT WITH ‘ =

From Control Structures
through Objects

seventh edition

TONY GADDIS

Constructors

Member function that is automatically called
when an object is created

Purpose is to construct an object

Constructor function name is class name

Has no return type

Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.h (Version 3)

// EBpecification file for the Rectangle class

/¢ This wersion has a constructor.
41 fndef RECTRNGLE H
tdefine RECTAHGLE_H

class Rectangle
{
private:
double width:
double length;
public:

Rectangle(); {// Constructor

vold setWidth(double);
vold setlength{double);

double getWidth() const
{ return width: }

doulbxle getlength() const
{ return length; }

double getArea() const
{ return width * length;

i

gendif

Copyright © 2012 Pearson Education, Inc.

b

Contents of Rectangle.cpp (Version 3)

// Implementation file for the Rectangle class.
// This wersion has a constructor.

¢include "Rectangle.h" [/ Needed for the Rectangle class
tinclude <iostream:> // Heeded for cout
tinclude <cstdlib> // HNeeded for the exit function

using namespace std;

J hdkkkdhkdhkkhhhhhk kb hdhhkh kb dhd kb hhkrhk bk bk kb kb ke b bk d kb h %

/{ The constructor initializes width and length to 0.0. *
l,-"_..-'1'r'|'rfr'l'r'.'r'l'r'.'r'l'r'.'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r1'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r'l'r'.'r'l'rir'l'rfr'l'rir'.'r1'r'.'r1'r'.'r1'r'.'r1'r1'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r'l'rir'l'rfr'l'rir'l'rir

Rectangle::Rectangle()

1
width = 0.0;
length

Il
o
W
o

-

Continues...

Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.ccp Version3
(continued)

ff**t

// setWidth sets the value of the member wvariable width. *
ff***

vold Rectangle::setWidth|double w)

{
if (w »= 0)
width = w;:
else
{
cout << "Invalid widthin":
exit (EXIT FAILUERE);
S
S

ff**t

/¢ setLength sets the value of the member variable length. *
fjtt*tt*tttttttttt*tttttt*tt*ttt*tttttt*t*t*tt*tttt***ttttﬁt*

volid Rectangle::setlength(double len)

{
if (len == 0)
length = len;
else
{
cout << "Invalid length'n";
exit (EXIT FAILURE);
}
+

Copyright © 2012 Pearson Education, Inc.

Program 13-6

// This program uses the Rectangle class's constructor.
¢include <iostream=

#include "Rectangle.h" // HNeeded for Rectangle class
using namespace std;

int main()

{

FEectangle bLox; // Define an instance of the Rectangle class

J/ Display the rectangle's data.
cout << "Here is the rectangle's data:\n'";

cout << "Width: " << box.getWidth({) << endl;
cout << "Length: " =< boxX.getlLength() << endl;
cout << "Area: " << box.getlArea() << endl;

return O:

}
Program 13-6 {continued)

Program Output

Here is the rectangle’'s data:
Width: 0

Length: 0O

Area: 0

Copyright © 2012 Pearson Education, Inc.

Default Constructors

* A default constructor is a constructor that takes no
arguments.

 If you write a class with no constructor at all, C++ will
write a default constructor for you, one that does nothing.

« A simple instantiation of a class (with no arguments)
calls the default constructor:

Rectangle r;

Copyright © 2012 Pearson Education, Inc.

C++

From Control Structures

R
I 3 | 8 TONY GADDIS

Passing Arguments to
Constructors

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to
Constructors

» To create a constructor that takes arguments:
— Indicate parameters in prototype:

Rectangle (double, double);

— Use parameters in the definition:

Rectangle: :Rectangle (double w, double
len)

{
width = w;
length = len;
}

Copyright © 2012 Pearson Education, Inc.

Passing Arguments to
Constructors

* You can pass arguments to the constructor
when you create an object:

Rectangle r (10, 5);

Copyright © 2012 Pearson Education, Inc.

More About Default
Constructors

* |f all of a constructor's parameters have default
arguments, then it is a default constructor. For

example:

Rectangle (double = 0, double = 0);

* Creating an object and passing no arguments
will cause this constructor to execute:

Rectangle r;

Copyright © 2012 Pearson Education, Inc.

Classes with No Default

Constructor

* When all of a class's constructors require
arguments, then the class has NO default
constructor.

* When this is the case, you must pass the
required arguments to the constructor
when creating an object.

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

13.9

Destructors

~ STARTING OUT WITH ‘ =

From Control Structures
through Objects

seventh edition

TONY GADDIS

Destructors

 Member function automatically called when an
object is destroyed

« Destructor name is ~classname, e.q.,
~Rectangle

* Has no return type; takes no arguments

* Only one destructor per class, i.e., it cannot be
overloaded

* |If constructor allocates dynamic memory,
destructor should release it

Copyright © 2012 Pearson Education, Inc.

Contents of InventoryItem.h (Version 1)

{f Bpecification file for the InventoryItem class.
#ifndef INVENTORYITEM H

tdefine INVENTORYITEM H
tinclude <cstring= {/ HNeeded for strlen and stropy

f/ InventoryItem class declaration.
class Inventoryltem

1

private:
char *descripticn; // The item descripticn
double cost: /{ The item cost
int units: {4 Mumber of units on hand

Copyright © 2012 Pearson Education, Inc.

Contents of InventoryItem.h Version
(Continued)

public:
{/ Constructor
InventoryItem({char *desc, double <, int u)
{ // Allocate just enough memory for the description.

description = new char [strlen{desc) + 1];

{/{ Copy the description to the allocated memocry.
stropy(description, desc);

{4 Assign values to cost and units.
cost = c;
units = u;}

// Destructor
~Inventoryltem|)
{ delete [] description; }

const char *getDescription() const
{ return description; }

double getCost() const
{ return cost; }

int getUnits() const
{ return units; }

ba

tendif

Copyright © 2012 Pearson Education, Inc.

Program 13-11

// This program demonstrates a class with a destructor.

tinclude <icstreams
tinclude <icmanip>
tinclude "InventoryItem.h"
using namespace std;

int maing()

1

// Define an Inventoryltem cbject with the following data:
// Description: Wrench Cost: 8.75 Units on hand: 20
Inventoryltem stock{"Wrench", 8.75, 20);

£/ Set numeric cutput formatting.
cout << setprecision(2) << fixed << showpoint;

Copyright © 2012 Pearson Education, Inc.

Program 13-11 (continued)

// Display the object’'s data.
cout << "Item Description: " << stock.getDescription({) << endl;

cout << "Cost: 5" << stock.getCost() << endl;

cout << "Units on hand: " << stock.getUnits() =< endl;

return 0O;

Program Output
Item Descripticon: Wrench

Cost: 58.75
Units on hand: 20

Copyright © 2012 Pearson Education, Inc.

Constructors, Destructors, and
Dynamically Allocated Objects

 When an object is dynamically allocated with the
new operator, its constructor executes:

Rectangle *r = new Rectangle (10, 20);

 When the object is destroyed, its destructor
executes:

delete r;

Copyright © 2012 Pearson Education, Inc.

From Control Structures

through Objects
I 3 | I O TONY GADDIS

Overloading Constructors

seventh edition

Copyright © 2012 Pearson Education, Inc.

Overloading Constructors

A class can have more than one constructor

 Qverloaded constructors in a class must have
different parameter lists:

Rectangle () ;
Rectangle (double) ;

Rectangle (double, double);

Copyright © 2012 Pearson Education, Inc.

// This class has overloaded constructors.
$ifndef INVENTORYITEM H

fdefine II*WENTORYITEM_H

$#include <string>

using namespace std;

class I nventoryltem

{
private:
string description; // The item description
double cost; // The item cost
int units; // Number of units on hand
public:

// Constructor #1
InventoryItem()
{ // Initialize description, cost, and units.
description = "";
cost = 0.0;
units = 0; }

// Constructor #2
Inventoryltem(string desc)
{ // Assign the value to description.

description = desc;

// Initialize cost and units.

cost = 0.0;)
units = 0; } Continues...

Copyright © 2012 Pearson Education, Inc.

// Constructor #3
Inventoryltem(string desc, double ¢, int u)
{ // Assign values to description, cost, and units.
description = desc;
cost = C;
units = uj; }

// Mutator functions
void setDescription(string d)
{ description = d; }

void setCost(double c)
{ cost = ¢c; }

void setUnits(int u)
{ units = u; }

// Accessor functions
string getDescription() const
{ return description; }

double getCost() const
{ return cost; }

int getUnits() const
{ return units; }

}i
#endif

Copyright © 2012 Pearson Education, Inc.

Only One Default Constructor
and One Destructor

* Do not provide more than one default
constructor for a class: one that takes no
arguments and one that has default arguments

for all parameters

square () ;
Square (int = 0); // will not compile

« Since a destructor takes no arguments, there
can only be one destructor for a class

Copyright © 2012 Pearson Education, Inc.

Member Function Overloading

 Non-constructor member functions can
also be overloaded:
vold setCost (double) ;

vold setCost (char *);

* Must have unique parameter lists as for
constructors

Copyright © 2012 Pearson Education, Inc.

From Control Structures
through Objects

seventh edition

TONY GADDIS

Using Private Member Functions

Copyright © 2012 Pearson Education, Inc.

Using Private Member
Functions

A private member function can only be called
by another member function

* |tis used for internal processing by the class, not
for use outside of the class

 See the createDescription function in
ContactInfo.h (Version 2)

Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.

13.12

Arrays of Objects

STARTING OUT WITH ‘ =

From Control Structures
through Objects

seventh edition

TONY GADDIS

Arrays of Objects

* Objects can be the elements of an array:

InventoryItem 1nventory[40];

» Default constructor for object is used
when array is defined

Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

* Must use initializer list to invoke
constructor that takes arguments:

InventoryItem inventory[3] =
{ "Hammer", "Wrench", "Pliers" };

Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

* If the constructor requires more than one
argument, the initializer must take the
form of a function call:

InventoryItem inventory[3] = { InventoryItem("Hammer", 6.95, 12},
Inventoryltem("Wrench", 8.75, 20),
InventoryItem("Pliers”, 3.75, 10} };

Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

* Itisn't necessary to call the same
constructor for each object in an array:

InventoryItem inventory[3] = { "Hammer",
Inventoryltem("Wrench", 2.75, 20),
"Pliers" }:

Copyright © 2012 Pearson Education, Inc.

Accessing Objects in an Array

* Objects in an array are referenced using
subscripts

 Member functions are referenced using dot
notation:

inventory[2] .setUnits (30);
cout << i1nventory[2].getUnits{();

Copyright © 2012 Pearson Education, Inc.

Program 13-13

// This program demonstrates an array of class objects.
tinclude <igstream>

tinclude <icmanip=

tinclude "InventoryItem.h"

using namespace std;

int maini)
{
const int NUM ITEMS = 5;
Inventoryltem inventory[NUM ITEMS] = {
InventoryItem| "Hammer", 6.95, 12),
InventoryItem|"Wrench", 2.75, 20},
InventoryItem("Pliers", 3.75, 10},
InventoryItem("Ratchet", 7.95, 14),
InventoryItem("Screwdriver", 2.50, 22) };

cout << setw(ld) <<"Inventory Item"
<< getw(8) << "Cost" << setw(8d)
<< setw(l6) << "Units On Hand\n";
COUE < M o W'

Copyright © 2012 Pearson Education, Inc.

Program 13-3 (Continued)

for (int 1 = 0; 1 < NUM ITEMS; i++)

{
cout << setw(l4) << inventory[i].getDescription();
cout << setw(8) << inventory[i].getlost();
cout << setw(7) << inventory[i].getUnits() << endl;
h

return O;

Program Output

Inventory ILtem Cost Units On Hand
Hammer 6.95 12
Wrench 8.75 20
Pliers 3.75 10
Ratchet 7.95 14
Screwdriver 2.5 22

Copyright © 2012 Pearson Education, Inc.

From Control Structures
through Objects

seventh edition

TONY GADDIS

The Unified Modeling Language

Copyright © 2012 Pearson Education, Inc.

The Unified Modeling Language

« UML stands for Unified Modeling
Language.

 The UML provides a set of standard

diagrams for graphically depicting object-
oriented systems

Copyright © 2012 Pearson Education, Inc.

UML Class Diagram

A UML diagram for a class has three main
sections.

Class name goes here —

Member variables are listed here —

Member functions are listed here —

Copyright © 2012 Pearson Education, Inc.

Example: A Rectangle Class

Rectangle

width
length

setWidth()
setLength()
getWidth()
getLength()
getArea()

class Rectangle

{

¥

private:
double width;
double length;

public:
bool setWidth (double) ;
bool setLength (double) ;
double getWidth () const;
double getLength () const;
double getArea () const;

Copyright © 2012 Pearson Education, Inc.

UML Access Specification
Notation
* In UML you indicate a private member

with a minus (-) and a public member
with a plus(+).

Rectangle

These member variables are

private. <" | ~ ;Z':;Th

+ setWidth()

| + setLength()
These member functlonsb?.re + getWidth()
public. + getLength()

+ getArea()

Copyright © 2012 Pearson Education, Inc.

UML Data Type Notation

« To indicate the data type of a member variable,
place a colon followed by the name of the data
type after the name of the variable.

- width : double
- length : double

Copyright © 2012 Pearson Education, Inc.

UML Parameter Type
Notation

* To indicate the data type of a function’s
parameter variable, place a colon followed

by the name of the data type after the
name of the variable.

+ setwidth(w : double)

Copyright © 2012 Pearson Education, Inc.

UML Function Return Type
Notation

* To indicate the data type of a function’s
return value, place a colon followed by the

name of the data type after the function’s
parameter list.

+ setwidth(w : double) : void

Copyright © 2012 Pearson Education, Inc.

The Rectangle Class

Rectangle

- width : double
- length : double

+ setWidth(w : double) : bool

+ setLength(len : double) : bool
+ getWidth() : double

+ getLength() : double

+ getArea() : double

Copyright © 2012 Pearson Education, Inc.

Showing Constructors and

Destructors

No return type listed for
constructors or destructors

Constructors é}

Inventoryltem

- description : char*

- cost : double

- units : int

- createDescription(size : int,
value : char*) : void

Destructor

Copyright © 2012 Pearson Education, Inc.

v

+ Inventoryltem() :

+ Inventoryltem(desc : char”) :

+ Inventoryltem(desc : char*,
c : double, u :int) :

+ ~Inventoryltem() :

+ setDescription(d : char*) : void

+ setCost(c : double) : void

+ setUnits(u : int) : void

+ getDescription() : char”

+ getCost() : double

+ getUnits() : int

	Slajd 1
	Slajd 2: 13.1
	Slajd 3: Procedural and Object-Oriented Programming
	Slajd 4: Limitations of Procedural Programming
	Slajd 5: Object-Oriented Programming Terminology
	Slajd 6: Classes and Objects
	Slajd 7: Object-Oriented Programming Terminology
	Slajd 8: More on Objects
	Slajd 9: 13.2
	Slajd 10: Introduction to Classes
	Slajd 11: Class Example
	Slajd 12: Access Specifiers
	Slajd 13: Class Example
	Slajd 14: More on Access Specifiers
	Slajd 15: Using const With Member Functions
	Slajd 16: Defining a Member Function
	Slajd 17: Accessors and Mutators
	Slajd 18: 13.3
	Slajd 19: Defining an Instance of a Class
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24: Avoiding Stale Data
	Slajd 25: Pointer to an Object
	Slajd 26: Dynamically Allocating an Object
	Slajd 27: 13.4
	Slajd 28: Why Have Private Members?
	Slajd 29
	Slajd 30: 13.5
	Slajd 31: Separating Specification from Implementation
	Slajd 32: 13.6
	Slajd 33: Inline Member Functions
	Slajd 34: Rectangle Class with Inline Member Functions
	Slajd 35: Tradeoffs – Inline vs. Regular Member Functions
	Slajd 36: 13.7
	Slajd 37: Constructors
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42: Default Constructors
	Slajd 43: 13.8
	Slajd 44: Passing Arguments to Constructors
	Slajd 45: Passing Arguments to Constructors
	Slajd 46: More About Default Constructors
	Slajd 47: Classes with No Default Constructor
	Slajd 48: 13.9
	Slajd 49: Destructors
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54: Constructors, Destructors, and Dynamically Allocated Objects
	Slajd 55: 13.10
	Slajd 56: Overloading Constructors
	Slajd 57
	Slajd 58
	Slajd 59: Only One Default Constructor and One Destructor
	Slajd 60: Member Function Overloading
	Slajd 61: 3.11
	Slajd 62: Using Private Member Functions
	Slajd 63: 13.12
	Slajd 64: Arrays of Objects
	Slajd 65: Arrays of Objects
	Slajd 66: Arrays of Objects
	Slajd 67: Arrays of Objects
	Slajd 68: Accessing Objects in an Array
	Slajd 69
	Slajd 70
	Slajd 71: 13.15
	Slajd 72: The Unified Modeling Language
	Slajd 73: UML Class Diagram
	Slajd 74: Example: A Rectangle Class
	Slajd 75: UML Access Specification Notation
	Slajd 76: UML Data Type Notation
	Slajd 77: UML Parameter Type Notation
	Slajd 78: UML Function Return Type Notation
	Slajd 79: The Rectangle Class
	Slajd 80: Showing Constructors and Destructors

