
Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Chapter 13:

Introduction

to Classes

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.1

Procedural and Object-Oriented

Programming

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Procedural and Object-Oriented

Programming
• Procedural programming focuses on the

process/actions that occur in a program

• Object-Oriented programming is based on

the data and the functions that operate on

it. Objects are instances of ADTs that

represent the data and its functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Limitations of Procedural

Programming
• If the data structures change, many

functions must also be changed

• Programs that are based on complex
function hierarchies are:

– difficult to understand and maintain

– difficult to modify and extend

– easy to break

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

Terminology
• class: like a struct (allows bundling of

related variables), but variables and

functions in the class can have different
properties than in a struct

• object: an instance of a class, in the

same way that a variable can be an
instance of a struct

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Classes and Objects

• A Class is like a blueprint and objects are

like houses built from the blueprint

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Object-Oriented Programming

Terminology
• attributes: members of a class

• methods or behaviors: member functions
of a class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

More on Objects

• data hiding: restricting access to certain
members of an object

• public interface: members of an object that are
available outside of the object. This allows the
object to provide access to some data and
functions without sharing its internal details and
design, and provides some protection from data
corruption

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.2

Introduction to Classes

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Introduction to Classes

• Objects are created from a class

• Format:

 class ClassName

 {

 declaration;

 declaration;

 };

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Example

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Access Specifiers

• Used to control access to members of the class

• public: can be accessed by functions outside
of the class

• private: can only be called by or accessed
by functions that are members of the class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Class Example

Private Members

Public Members

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

More on Access Specifiers

• Can be listed in any order in a class

• Can appear multiple times in a class

• If not specified, the default is private

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using const With Member Functions

• const appearing after the parentheses in

a member function declaration specifies

that the function will not change any data

in the calling object.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining a Member Function

• When defining a member function:

– Put prototype in class declaration

– Define function using class name and scope
resolution operator (::)

 int Rectangle::setWidth(double w)

 {

 width = w;

 }

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessors and Mutators

• Mutator: a member function that stores a

value in a private member variable, or

changes its value in some way

• Accessor: function that retrieves a value

from a private member variable.

Accessors do not change an object's data,
so they should be marked const.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.3

Defining an Instance of a Class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Defining an Instance of a

Class

• An object is an instance of a class

• Defined like structure variables:
 Rectangle r;

• Access members using dot operator:
 r.setWidth(5.2);

 cout << r.getWidth();

• Compiler error if attempt to access
private member using dot operator

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 13-1 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Avoiding Stale Data

• Some data is the result of a calculation.

• In the Rectangle class the area of a rectangle is
calculated.
– length x width

• If we were to use an area variable here in the
Rectangle class, its value would be dependent on the
length and the width.

• If we change length or width without updating area,
then area would become stale.

• To avoid stale data, it is best to calculate the value of
that data within a member function rather than store it in
a variable.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Pointer to an Object

• Can define a pointer to an object:

Rectangle *rPtr;

• Can access public members via pointer:

rPtr = &otherRectangle;

rPtr->setLength(12.5);

cout << rPtr->getLenght() << endl;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Dynamically Allocating an

Object
• We can also use a pointer to dynamically

allocate an object.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.4

Why Have Private Members?

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Why Have Private Members?

• Making data members private provides
data protection

• Data can be accessed only through
public functions

• Public functions define the class’s public
interface

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Code outside the class must use the class's

public member functions to interact with the

object.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.5

Separating Specification from

Implementation

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Separating Specification from

Implementation
– Place class declaration in a header file that

serves as the class specification file. Name the
file ClassName.h, for example, Rectangle.h

– Place member function definitions in
ClassName.cpp, for example,
Rectangle.cpp File should #include the
class specification file

– Programs that use the class must #include
the class specification file, and be compiled and
linked with the member function definitions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.6

Inline Member Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Inline Member Functions

• Member functions can be defined

– inline: in class declaration

– after the class declaration

• Inline appropriate for short function bodies:

 int getWidth() const

 { return width; }

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Rectangle Class with Inline

Member Functions
1 // Specification file for the Rectangle class

 2 // This version uses some inline member functions.

 3 #ifndef RECTANGLE_H

 4 #define RECTANGLE_H

 5

 6 class Rectangle

 7 {

 8 private:

 9 double width;

10 double length;

11 public:

12 void setWidth(double);

13 void setLength(double);

14

15 double getWidth() const

16 { return width; }

17

18 double getLength() const

19 { return length; }

20

21 double getArea() const

22 { return width * length; }

23 };

24 #endif

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Tradeoffs – Inline vs. Regular

Member Functions
• Regular functions – when called, compiler

stores return address of call, allocates

memory for local variables, etc.

• Code for an inline function is copied into

program in place of call – larger

executable program, but no function call

overhead, hence faster execution

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.7

Constructors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constructors

• Member function that is automatically called
when an object is created

• Purpose is to construct an object

• Constructor function name is class name

• Has no return type

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Continues...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Contents of Rectangle.ccp Version3

(continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Default Constructors

• A default constructor is a constructor that takes no
arguments.

• If you write a class with no constructor at all, C++ will
write a default constructor for you, one that does nothing.

• A simple instantiation of a class (with no arguments)
calls the default constructor:

 Rectangle r;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.8

Passing Arguments to

Constructors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing Arguments to

Constructors

• To create a constructor that takes arguments:

– indicate parameters in prototype:

Rectangle(double, double);

– Use parameters in the definition:

Rectangle::Rectangle(double w, double

len)

{

 width = w;

 length = len;

}

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Passing Arguments to

Constructors

• You can pass arguments to the constructor
when you create an object:

 Rectangle r(10, 5);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

More About Default

Constructors
• If all of a constructor's parameters have default

arguments, then it is a default constructor. For
example:

Rectangle(double = 0, double = 0);

• Creating an object and passing no arguments
will cause this constructor to execute:

Rectangle r;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Classes with No Default

Constructor
• When all of a class's constructors require

arguments, then the class has NO default

constructor.

• When this is the case, you must pass the

required arguments to the constructor

when creating an object.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.9

Destructors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Destructors

• Member function automatically called when an
object is destroyed

• Destructor name is ~classname, e.g.,
~Rectangle

• Has no return type; takes no arguments

• Only one destructor per class, i.e., it cannot be
overloaded

• If constructor allocates dynamic memory,
destructor should release it

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Contents of InventoryItem.h Version1

(Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Constructors, Destructors, and

Dynamically Allocated Objects
• When an object is dynamically allocated with the

new operator, its constructor executes:

Rectangle *r = new Rectangle(10, 20);

• When the object is destroyed, its destructor
executes:

delete r;

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.10

Overloading Constructors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Overloading Constructors

• A class can have more than one constructor

• Overloaded constructors in a class must have

different parameter lists:

 Rectangle();

Rectangle(double);

 Rectangle(double, double);

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Continues...

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Only One Default Constructor

and One Destructor

• Do not provide more than one default

constructor for a class: one that takes no

arguments and one that has default arguments

for all parameters

 Square();

 Square(int = 0); // will not compile

• Since a destructor takes no arguments, there

can only be one destructor for a class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Member Function Overloading

• Non-constructor member functions can

also be overloaded:

 void setCost(double);

 void setCost(char *);

• Must have unique parameter lists as for

constructors

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

3.11

Using Private Member Functions

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Using Private Member

Functions
• A private member function can only be called

by another member function

• It is used for internal processing by the class, not
for use outside of the class

• See the createDescription function in
ContactInfo.h (Version 2)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.12

Arrays of Objects

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• Objects can be the elements of an array:

InventoryItem inventory[40];

• Default constructor for object is used
when array is defined

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• Must use initializer list to invoke
constructor that takes arguments:

InventoryItem inventory[3] =

{ "Hammer", "Wrench", "Pliers" };

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• If the constructor requires more than one

argument, the initializer must take the

form of a function call:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Arrays of Objects

• It isn't necessary to call the same

constructor for each object in an array:

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Accessing Objects in an Array

• Objects in an array are referenced using
subscripts

• Member functions are referenced using dot
notation:

inventory[2].setUnits(30);

cout << inventory[2].getUnits();

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Program 13-3 (Continued)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

13.15

The Unified Modeling Language

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Unified Modeling Language

• UML stands for Unified Modeling

Language.

• The UML provides a set of standard

diagrams for graphically depicting object-

oriented systems

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Class Diagram

• A UML diagram for a class has three main

sections.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Example: A Rectangle Class

class Rectangle

{

 private:

 double width;

 double length;

 public:

 bool setWidth(double);

 bool setLength(double);

 double getWidth() const;

 double getLength() const;

 double getArea() const;

};

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Access Specification

Notation

• In UML you indicate a private member

with a minus (-) and a public member

with a plus(+).

These member variables are

private.

These member functions are

public.

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Data Type Notation

• To indicate the data type of a member variable,

place a colon followed by the name of the data

type after the name of the variable.

- width : double
- length : double

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Parameter Type

Notation

• To indicate the data type of a function’s

parameter variable, place a colon followed

by the name of the data type after the

name of the variable.

+ setWidth(w : double)

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

UML Function Return Type

Notation

• To indicate the data type of a function’s

return value, place a colon followed by the

name of the data type after the function’s

parameter list.

+ setWidth(w : double) : void

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

The Rectangle Class

Copyright © 2012 Pearson Education, Inc.Copyright © 2012 Pearson Education, Inc.

Showing Constructors and

Destructors

Constructors

Destructor

No return type listed for

constructors or destructors

	Slajd 1
	Slajd 2: 13.1
	Slajd 3: Procedural and Object-Oriented Programming
	Slajd 4: Limitations of Procedural Programming
	Slajd 5: Object-Oriented Programming Terminology
	Slajd 6: Classes and Objects
	Slajd 7: Object-Oriented Programming Terminology
	Slajd 8: More on Objects
	Slajd 9: 13.2
	Slajd 10: Introduction to Classes
	Slajd 11: Class Example
	Slajd 12: Access Specifiers
	Slajd 13: Class Example
	Slajd 14: More on Access Specifiers
	Slajd 15: Using const With Member Functions
	Slajd 16: Defining a Member Function
	Slajd 17: Accessors and Mutators
	Slajd 18: 13.3
	Slajd 19: Defining an Instance of a Class
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24: Avoiding Stale Data
	Slajd 25: Pointer to an Object
	Slajd 26: Dynamically Allocating an Object
	Slajd 27: 13.4
	Slajd 28: Why Have Private Members?
	Slajd 29
	Slajd 30: 13.5
	Slajd 31: Separating Specification from Implementation
	Slajd 32: 13.6
	Slajd 33: Inline Member Functions
	Slajd 34: Rectangle Class with Inline Member Functions
	Slajd 35: Tradeoffs – Inline vs. Regular Member Functions
	Slajd 36: 13.7
	Slajd 37: Constructors
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42: Default Constructors
	Slajd 43: 13.8
	Slajd 44: Passing Arguments to Constructors
	Slajd 45: Passing Arguments to Constructors
	Slajd 46: More About Default Constructors
	Slajd 47: Classes with No Default Constructor
	Slajd 48: 13.9
	Slajd 49: Destructors
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54: Constructors, Destructors, and Dynamically Allocated Objects
	Slajd 55: 13.10
	Slajd 56: Overloading Constructors
	Slajd 57
	Slajd 58
	Slajd 59: Only One Default Constructor and One Destructor
	Slajd 60: Member Function Overloading
	Slajd 61: 3.11
	Slajd 62: Using Private Member Functions
	Slajd 63: 13.12
	Slajd 64: Arrays of Objects
	Slajd 65: Arrays of Objects
	Slajd 66: Arrays of Objects
	Slajd 67: Arrays of Objects
	Slajd 68: Accessing Objects in an Array
	Slajd 69
	Slajd 70
	Slajd 71: 13.15
	Slajd 72: The Unified Modeling Language
	Slajd 73: UML Class Diagram
	Slajd 74: Example: A Rectangle Class
	Slajd 75: UML Access Specification Notation
	Slajd 76: UML Data Type Notation
	Slajd 77: UML Parameter Type Notation
	Slajd 78: UML Function Return Type Notation
	Slajd 79: The Rectangle Class
	Slajd 80: Showing Constructors and Destructors

