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Procedural and Object-Oriented

Programming

* Procedural programming focuses on the
process/actions that occur in a program

* Object-Oriented programming is based on
the data and the functions that operate on
it. Objects are instances of ADTs that
represent the data and its functions
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Limitations of Procedural

Programming

* |f the data structures change, many
functions must also be changed

* Programs that are based on complex
function hierarchies are:

— difficult to understand and maintain
— difficult to modify and extend
— easy to break
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Object-Oriented Programming

Terminology

 class: like a struct (allows bundling of

related variables), but variables and

functions in the class can have different
properties than in a struct

* object: an instance of a class, in the

same way that a variable can be an
instance of a struct
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Classes and Objects

* A Class is like a blueprint and objects are
like houses built from the blueprint

Blueprint that describes a house.

Instances of the house described by the blueprint.
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Object-Oriented Programming

Terminology
o attributes: members of a class

e methods or behaviors: member functions
of a class
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More on Objects

« data hiding: restricting access to certain
members of an object

 public interface: members of an object that are
available outside of the object. This allows the
object to provide access to some data and
functions without sharing its internal details and
design, and provides some protection from data
corruption
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Introduction to Classes

* Objects are created from a class
 Format:

class ClassName

{

declaration;

declaration;

by
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Class Example

class Rectangle
1
private:
double width:
doubble length;
public:
vold setWidth(double);
vold setlLength({double);
double getWidth() const;
double getlLength{) const;
doulbble JgetArea() const;
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Access Specifiers

« Used to control access to members of the class

« public: can be accessed by functions outside
of the class

« private: can only be called by or accessed
by functions that are members of the class
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Class Example

Private Members
class Rectangle
1 //

privates:

double width; Public Members

double length; ///
public:

vold setWidth(double);
vold setlength{double);
double getWidth() const;
double getLengthi{) const;
double JgetlArea() const;
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More on Access Specifiers

» Can be listed in any order in a class

« Can appear multiple times in a class

* If not specified, the default is private
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Using const With Member Functions

e const appearing after the parentheses in
a member function declaration specifies
that the function will not change any data
In the calling object.

double getWidth() const;
double getLength() const;

double getArea() const;
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Defining a Member Function

* When defining a member function:
— Put prototype in class declaration

— Define function using class name and scope
resolution operator (::)

int Rectangle::setWidth (double w)

{
width = w;

J
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Accessors and Mutators

* Mutator: a member function that stores a
value in a private member variable, or
changes its value in some way

 Accessor: function that retrieves a value
from a private member variable.

Accessors do not change an object's data,
so they should be marked const.
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Defining an Instance of a
Class

* An object is an instance of a class
» Defined like structure variables:
Rectangle r;

* Access members using dot operator:
r.setWidth(5.2);
cout << r.getWidth () ;

« Compiler error if attempt to access
private member using dot operator
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Program 13-1

{/f This program demonstrates a simple class.
¢include <icstream=
using namespace std;

{// Rectangle class declaration.
class Rectangle

{
private:
double width:
double length;
public:
vold setWidth(double);
volid setLength{double);
double getWidth() const;
double getlLength() const;
double gethArea() const;
i

ff**************k*k*******t**************k*k*k******

{/ setWidth assigns a walue to the width member. *
ff**************k*k*k***t****************k*k*k***t**

vold Rectangle::setWidth(double w)

{
width = w;

ff********************t*t*t************************t

{/ setlLength assigns a value to the length member. *
ff********************t*t*t********************t*t*t
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Program 13-1 (Continued)

vold Rectangle::setlength({double len)

{
length = len;

fﬁt**t**************t**t*****************t**********

{/ getWidth returns the wvalue in the width member. *
fﬁtt*tttt*t**t*t**k*tt*tttt*t**t*tt*k**t*tttt**t*t**

double Rectangle::getWidth() const
{

return width;:

fﬁtt*tt*t*********#*t#*tt*t**t******#*ﬁ#*tt*t**t******

{/ getLength returns the walue in the length member. *
ffttttttt*t****t**t*tt*tttt*tt*t*t**t**t*tttt*tt*t****

double Rectangle::getlLength() const
{

return length;
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Program 13-1 (Continued)

HH*****************************t*****************t*****

{/{ getArea returns the product of width times length. *
fﬁ******t*t*ttk****t****t*t****tktkt******t******tk*k*t

double Eectangle::getlrea() const

1
return width * length;

fﬁ*tt*t*t*t**ttt*t*tt***t*t*tt*t#t#t**ﬁ*t*t*t**t*t#t#tt

S/ Funection main *
HH***********tk****************tk*k**************tk*k**

int mainf()

{
Rectangle hox; // Define an instance of the Rectangle class
double rectWidth:; // Local variable for width
double rectlength; // Local wariable for length

{{ Get the rectangle's width and length from the user.
cout << "This program will calculate the area of a\n";
cout << "rectangle. What is the width? ";
cin »» rectWidth;

cout << "What is the length? ";

cin »> rectLenagth;

// Store the width and length of the rectangle
{4 in the box object.

box.setWidth(rectWidth);
box.setlength|rectLength);
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Program 13-1 (Continued)

// Display the rectangle's data.
cout << "Here 1s the rectangle's data:‘\n";

cout << "Width: " << box.getWidth({) << endl;
cout << "Length: " << box.getLength() << endl;
cout << "Area: " << boX.getArea() << endl;
return 0O;
I
Program Output

This program will calculate the area of a
rectangle. What is the width? 10 [Enter]
What is the length? 5 [Enter]

Here 1s the rectangle's data:

Width: 10
Length: 5
Area: 50
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Avoiding Stale Data

« Some data is the result of a calculation.

* In the Rectangle class the area of a rectangle is
calculated.
— length x width

» If we were to use an area variable here in the
Rectangle class, its value would be dependent on the
length and the width.

» If we change 1length or width without updating area,
then area would become stale.

 To avoid stale data, it is best to calculate the value of
that data within a member function rather than store it in
a variable.
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Pointer to an Object

» Can define a pointer to an object:
Rectangle *rPtr;

« Can access public members via pointer:
rPtr = &otherRectangle;

rPtr->setLength (12.5);
cout << rPtr->getlLenght () << endl;
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Dynamically Allocating an
Object

* We can also use a pointer to dynamically
allocate an object.

// Define a Rectangle pointer.
Eectangle *rectPtr;

// Dynamically allocate a Rectangle object.
rectPtr = new Rectangle;

{/f Store values in the cbject's width and length.

rectPtr->setWidth(10.0);
rectPtr->setlLength{15.0);

// Delete the object from memory.
delete rectPtr:
rectPtr = 0;
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Why Have Private Members?

» Making data members private provides
data protection

« Data can be accessed only through
public functions

* Public functions define the class’s public
interface
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Code outside the class must use the class's
public member functions to interact with the
object.

Rectangle Class

v‘\{idth I?ngth
- setWidth:I \
Code .+ | getWidth
Outside the
Class setLength——
B getLength=——
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Separating Specification from
Implementation

— Place class declaration in a header file that
serves as the class specification file. Name the
file ClassName.h, for example, Rectangle.h

— Place member function definitions in
ClassName. cpp, for example,
Rectangle.cpp File should #include the
class specification file

— Programs that use the class must #include
the class specification file, and be compiled and
linked with the member function definitions
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Inline Member Functions

* Member functions can be defined
— Inline: In class declaration
— after the class declaration

* Inline appropriate for short function bodies:

int getWidth () const
{ return width; }
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Rectangle Class with Inline
Member Functions

1 // Specification file for the Rectangle class
2 // This version uses some inline member functions.
3 #ifndef RECTANGLE H

4 #define RECTANGLE H

5

6 class Rectangle

T A

8 private:

9 double width;
10 double length;
11 public:
12 vold setWidth (double) ;
13 void setLength (double) ;
14
15 double getWidth () const
16 { return width; }
17
18 double getLength () const
19 { return length; }
20
21 double getArea () const
22 { return width * length; }
23 };
24  #endif
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Tradeoffs — Inline vs. Regular

Member Functions

* Regular functions — when called, compiler
stores return address of call, allocates
memory for local variables, etc.

» Code for an inline function is copied into
program in place of call — larger
executable program, but no function call
overhead, hence faster execution
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Constructors

Member function that is automatically called
when an object is created

Purpose is to construct an object

Constructor function name is class name

Has no return type
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Contents of Rectangle.h (Version 3)

// EBpecification file for the Rectangle class

/¢ This wersion has a constructor.
41 fndef RECTRNGLE H
tdefine RECTAHGLE_H

class Rectangle
{
private:
double width:
double length;
public:

Rectangle(); {// Constructor

vold setWidth(double);
vold setlength{double);

double getWidth() const
{ return width: }

doulbxle getlength() const
{ return length; }

double getArea() const
{ return width * length;

i

gendif
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Contents of Rectangle.cpp (Version 3)

// Implementation file for the Rectangle class.
// This wersion has a constructor.

¢include "Rectangle.h" [/ Needed for the Rectangle class
tinclude <iostream:> // Heeded for cout
tinclude <cstdlib> // HNeeded for the exit function

using namespace std;

J hdkkkdhkdhkkhhhhhk kb hdhhkh kb dhd kb hhkrhk bk bk kb kb ke b bk d kb h %

/{ The constructor initializes width and length to 0.0. *
l,-"_..-'1'r'|'rfr'l'r'.'r'l'r'.'r'l'r'.'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r1'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r'l'r'.'r'l'rir'l'rfr'l'rir'.'r1'r'.'r1'r'.'r1'r'.'r1'r1'r'.'r1'r'.'r1'r'.'r1'r'.'r1'r'l'rir'l'rfr'l'rir'l'rir

Rectangle::Rectangle( )

1
width = 0.0;
length

Il
o
W
o

-

Continues...
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Contents of Rectangle.ccp Version3
(continued)

ff**********************************************************t

// setWidth sets the value of the member wvariable width. *
ff***********************************************************

vold Rectangle::setWidth|double w)

{
if (w »= 0)
width = w;:
else
{
cout << "Invalid widthin":
exit (EXIT FAILUERE);
S
S

ff**********************************************************t

/¢ setLength sets the value of the member variable length. *
fjtt*tt*tttttttttt*tttttt*tt*ttt*tttttt*t*t*tt*tttt***ttttﬁt*

volid Rectangle::setlength(double len)

{
if (len == 0)
length = len;
else
{
cout << "Invalid length'n";
exit (EXIT FAILURE);
}
+

Copyright © 2012 Pearson Education, Inc.



Program 13-6

// This program uses the Rectangle class's constructor.
¢include <iostream=

#include "Rectangle.h" // HNeeded for Rectangle class
using namespace std;

int main()

{

FEectangle bLox; // Define an instance of the Rectangle class

J/ Display the rectangle's data.
cout << "Here is the rectangle's data:\n'";

cout << "Width: " << box.getWidth({) << endl;
cout << "Length: " =< boxX.getlLength() << endl;
cout << "Area: " << box.getlArea() << endl;

return O:

}
Program 13-6 {continued)

Program Output

Here is the rectangle’'s data:
Width: 0

Length: 0O

Area: 0
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Default Constructors

* A default constructor is a constructor that takes no
arguments.

 If you write a class with no constructor at all, C++ will
write a default constructor for you, one that does nothing.

« A simple instantiation of a class (with no arguments)
calls the default constructor:

Rectangle r;
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Passing Arguments to
Constructors

» To create a constructor that takes arguments:
— Indicate parameters in prototype:

Rectangle (double, double);

— Use parameters in the definition:

Rectangle: :Rectangle (double w, double
len)

{
width = w;
length = len;
}
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Passing Arguments to
Constructors

* You can pass arguments to the constructor
when you create an object:

Rectangle r (10, 5);
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More About Default
Constructors

* |f all of a constructor's parameters have default
arguments, then it is a default constructor. For

example:

Rectangle (double = 0, double = 0);

* Creating an object and passing no arguments
will cause this constructor to execute:

Rectangle r;
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Classes with No Default

Constructor

* When all of a class's constructors require
arguments, then the class has NO default
constructor.

* When this is the case, you must pass the
required arguments to the constructor
when creating an object.
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Destructors

 Member function automatically called when an
object is destroyed

« Destructor name is ~classname, e.q.,
~Rectangle

* Has no return type; takes no arguments

* Only one destructor per class, i.e., it cannot be
overloaded

* |If constructor allocates dynamic memory,
destructor should release it
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Contents of InventoryItem.h (Version 1)

{f Bpecification file for the InventoryItem class.
#ifndef INVENTORYITEM H

tdefine INVENTORYITEM H
tinclude <cstring= {/ HNeeded for strlen and stropy

f/ InventoryItem class declaration.
class Inventoryltem

1

private:
char *descripticn; // The item descripticn
double cost: /{ The item cost
int units: {4 Mumber of units on hand
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Contents of InventoryItem.h Version
(Continued)

public:
{/ Constructor
InventoryItem({char *desc, double <, int u)
{ // Allocate just enough memory for the description.

description = new char [strlen{desc) + 1];

{/{ Copy the description to the allocated memocry.
stropy(description, desc);

{4 Assign values to cost and units.
cost = c;
units = u;}

// Destructor
~Inventoryltem|)
{ delete [] description; }

const char *getDescription() const
{ return description; }

double getCost() const
{ return cost; }

int getUnits() const
{ return units; }

ba

tendif
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Program 13-11

// This program demonstrates a class with a destructor.

tinclude <icstreams
tinclude <icmanip>
tinclude "InventoryItem.h"
using namespace std;

int maing()

1

// Define an Inventoryltem cbject with the following data:
// Description: Wrench Cost: 8.75 Units on hand: 20
Inventoryltem stock{"Wrench", 8.75, 20);

£/ Set numeric cutput formatting.
cout << setprecision(2) << fixed << showpoint;
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Program 13-11 (continued)

// Display the object’'s data.
cout << "Item Description: " << stock.getDescription({) << endl;

cout << "Cost: 5" << stock.getCost() << endl;

cout << "Units on hand: " << stock.getUnits() =< endl;

return 0O;

Program Output
Item Descripticon: Wrench

Cost: 58.75
Units on hand: 20
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Constructors, Destructors, and
Dynamically Allocated Objects

 When an object is dynamically allocated with the
new operator, its constructor executes:

Rectangle *r = new Rectangle (10, 20);

 When the object is destroyed, its destructor
executes:

delete r;
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Overloading Constructors

A class can have more than one constructor

 Qverloaded constructors in a class must have
different parameter lists:

Rectangle () ;
Rectangle (double) ;

Rectangle (double, double);
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// This class has overloaded constructors.
$ifndef INVENTORYITEM H

fdefine II*WENTORYITEM_H

$#include <string>

using namespace std;

class I nventoryltem

{
private:
string description; // The item description
double cost; // The item cost
int units; // Number of units on hand
public:

// Constructor #1
InventoryItem()
{ // Initialize description, cost, and units.
description = "";
cost = 0.0;
units = 0; }

// Constructor #2
Inventoryltem(string desc)
{ // Assign the value to description.

description = desc;

// Initialize cost and units.

cost = 0.0; )
units = 0; } Continues...
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// Constructor #3
Inventoryltem(string desc, double ¢, int u)
{ // Assign values to description, cost, and units.
description = desc;
cost = C;
units = uj; }

// Mutator functions
void setDescription(string d)
{ description = d; }

void setCost(double c)
{ cost = ¢c; }

void setUnits(int u)
{ units = u; }

// Accessor functions
string getDescription() const
{ return description; }

double getCost() const
{ return cost; }

int getUnits() const
{ return units; }

}i
#endif
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Only One Default Constructor
and One Destructor

* Do not provide more than one default
constructor for a class: one that takes no
arguments and one that has default arguments

for all parameters

square () ;
Square (int = 0); // will not compile

« Since a destructor takes no arguments, there
can only be one destructor for a class
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Member Function Overloading

 Non-constructor member functions can
also be overloaded:
vold setCost (double) ;

vold setCost (char *);

* Must have unique parameter lists as for
constructors
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Using Private Member
Functions

A private member function can only be called
by another member function

* |tis used for internal processing by the class, not
for use outside of the class

 See the createDescription function in
ContactInfo.h (Version 2)
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Arrays of Objects

* Objects can be the elements of an array:

InventoryItem 1nventory[40];

» Default constructor for object is used
when array is defined
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Arrays of Objects

* Must use initializer list to invoke
constructor that takes arguments:

InventoryItem inventory[3] =
{ "Hammer", "Wrench", "Pliers" };
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Arrays of Objects

* If the constructor requires more than one
argument, the initializer must take the
form of a function call:

InventoryItem inventory[3] = { InventoryItem("Hammer", 6.95, 12},
Inventoryltem("Wrench", 8.75, 20),
InventoryItem("Pliers”, 3.75, 10} };
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Arrays of Objects

* Itisn't necessary to call the same
constructor for each object in an array:

InventoryItem inventory[3] = { "Hammer",
Inventoryltem("Wrench", 2.75, 20),
"Pliers" }:
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Accessing Objects in an Array

* Objects in an array are referenced using
subscripts

 Member functions are referenced using dot
notation:

inventory[2] .setUnits (30);
cout << i1nventory[2].getUnits{();

Copyright © 2012 Pearson Education, Inc.



Program 13-13

// This program demonstrates an array of class objects.
tinclude <igstream>

tinclude <icmanip=

tinclude "InventoryItem.h"

using namespace std;

int maini)
{
const int NUM ITEMS = 5;
Inventoryltem inventory[NUM ITEMS] = {
InventoryItem| "Hammer", 6.95, 12),
InventoryItem|"Wrench", 2.75, 20},
InventoryItem("Pliers", 3.75, 10},
InventoryItem("Ratchet", 7.95, 14),
InventoryItem("Screwdriver", 2.50, 22) };

cout << setw(ld) <<"Inventory Item"
<< getw(8) << "Cost" << setw(8d)
<< setw(l6) << "Units On Hand\n";
COUE < M o W'
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Program 13-3 (Continued)

for (int 1 = 0; 1 < NUM ITEMS; i++)

{
cout << setw(l4) << inventory[i].getDescription();
cout << setw(8) << inventory[i].getlost();
cout << setw(7) << inventory[i].getUnits() << endl;
h

return O;

Program Output

Inventory ILtem Cost Units On Hand
Hammer 6.95 12
Wrench 8.75 20
Pliers 3.75 10
Ratchet 7.95 14
Screwdriver 2.5 22
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The Unified Modeling Language

« UML stands for Unified Modeling
Language.

 The UML provides a set of standard

diagrams for graphically depicting object-
oriented systems
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UML Class Diagram

A UML diagram for a class has three main
sections.

Class name goes here —

Member variables are listed here —

Member functions are listed here —
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Example: A Rectangle Class

Rectangle

width
length

setWidth()
setLength()
getWidth()
getLength()
getArea()

class Rectangle

{

¥

private:
double width;
double length;

public:
bool setWidth (double) ;
bool setLength (double) ;
double getWidth () const;
double getLength () const;
double getArea () const;
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UML Access Specification
Notation
* In UML you indicate a private member

with a minus (-) and a public member
with a plus(+).

Rectangle

These member variables are

private. <" | ~ ;Z':;Th

+ setWidth()

| + setLength()
These member functlonsb?.re + getWidth()
public. + getLength()

+ getArea()
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UML Data Type Notation

« To indicate the data type of a member variable,
place a colon followed by the name of the data
type after the name of the variable.

- width : double
- length : double
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UML Parameter Type
Notation

* To indicate the data type of a function’s
parameter variable, place a colon followed

by the name of the data type after the
name of the variable.

+ setwidth(w : double)
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UML Function Return Type
Notation

* To indicate the data type of a function’s
return value, place a colon followed by the

name of the data type after the function’s
parameter list.

+ setwidth(w : double) : void
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The Rectangle Class

Rectangle

- width : double
- length : double

+ setWidth(w : double) : bool

+ setLength(len : double) : bool
+ getWidth() : double

+ getLength() : double

+ getArea() : double
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Showing Constructors and

Destructors

No return type listed for
constructors or destructors

Constructors é}

Inventoryltem

- description : char*

- cost : double

- units : int

- createDescription(size : int,
value : char*) : void

Destructor

Copyright © 2012 Pearson Education, Inc.

v

+ Inventoryltem() :

+ Inventoryltem(desc : char”) :

+ Inventoryltem(desc : char*,
c : double, u :int) :

+ ~Inventoryltem() :

+ setDescription(d : char*) : void

+ setCost(c : double) : void

+ setUnits(u : int) : void

+ getDescription() : char”

+ getCost() : double

+ getUnits() : int
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